
Advances in Real-Time Rendering in Games

Advances in Real-Time Rendering in Games

Rendering in Cars 2
Chris Hall

Christopher.Hall@disney.com

Rob Hall

Robert.W.Hall@disney.com

Dave Edwards

David.W.Edwards@disney.com

Advances in Real-Time Rendering in Games

Cars 2 Motivation

 Different gameplay demands different technology

Advances in Real-Time Rendering in Games

Differences

Toy Story 3 Cars 2

Platforming Racing

2 player split screen 4 player split screen

Average 30fps Essential to maintain 30fps

© Disney/Pixar

Advances in Real-Time Rendering in Games

Toy Story 3 Cars 2

All dynamic lighting Lightmaps, Light probes, limited dynamic

Dynamic cascaded shadow mapping Simplified shadowmaps for dynamic only

SSAO, Depth of Field, Glow, God Rays,

Sparkle, Bloom, Deferred Ambient
HDR, Bloom, Motion Blur, Color

Correction

© Disney/Pixar

Advances in Real-Time Rendering in Games

Movie

Advances in Real-Time Rendering in Games

Outline

 Light Probes

 HDR color precision

 Early stencil shadow culling

 PS3 Post Processing

© Disney/Pixar

Advances in Real-Time Rendering in Games

Light Probes
Chris Hall

Advances in Real-Time Rendering in Games

Motivation

 4 Players

 Lightmaps for all world geometry

 Real-time lighting didn’t match

© Disney/Pixar

Advances in Real-Time Rendering in Games

Light probes

 Capture light from a point in space

 Bounce lighting

 Environment Mapping

© Disney/Pixar

Advances in Real-Time Rendering in Games

Global probe

 Used for bounce lighting for outdoors

 Either artist defined light rig or captured probe

Environment Map Irradiance Map (SH)

© Disney/Pixar

Advances in Real-Time Rendering in Games

Bounce lighting data

 Store as spherical harmonics

 Order 3 SH = 108 bytes per probe

 Can pack in direct lighting for free

© Disney/Pixar

Advances in Real-Time Rendering in Games

Probe Capture

 Render cubemaps on GPU

 Save as 16F for HDR

 Atlas for speed

 Bounced lighting

 Cubemap to SH

projection [Sloan],

DirectX SDK

© Disney/Pixar

Advances in Real-Time Rendering in Games

Irradiance Volume

 Volume with a bunch of light probes

 Allows for varied bounced light throughout the world

 Very popular to use with lightmaps

 [Greger 1998]

 [Tatarchuk 2005]

 [Mitchell, McTaggart and Green

2006]

© Disney/Pixar

Advances in Real-Time Rendering in Games

Volume choice

 Racing game

 2-5 miles of track per world

 Mostly outside

 Lots of thin, curvy areas

 Coverage isn’t essential

© Disney/Pixar

Advances in Real-Time Rendering in Games

Uniform grid volume

 Box Volume

 Can be rotated and scaled to fit anywhere

 Box split with variable amount of slices (density x/y/z)

 Probes placed along the slices of the volume

© Disney/Pixar

Advances in Real-Time Rendering in Games

Grid Analysis

 Simple structure and easy to implement

 Entire data is saved into a continuous array

 Sample with box intersection tests

 Can access each probe by an offset

 O(1) to sample inside the grid

 Cost is only spent inside volumes

 Wastes space

© Disney/Pixar

Advances in Real-Time Rendering in Games

Fading Regions

 Blend between global probe and volume lighting

 Outer Fading Volume

 Inner Fading Volume

 Fading amount

© Disney/Pixar

Advances in Real-Time Rendering in Games

 Probes outside world have incorrect lighting

 How to detect

 Replace with

correct lighting

 [Kontkanen and Laine]

Invalid points

© Disney/Pixar

Advances in Real-Time Rendering in Games

Volume Lookup

 We need some way to light our objects with them

 CPU Based

 Assign/blend closest SH per mesh

 Pass SH data through to GPU

 GPU Based

 Per pixel or per vertex

 Sample probes on the GPU

© Disney/Pixar

Advances in Real-Time Rendering in Games

CPU Assignment

 For each mesh, sample the lighting at the mesh center

 Intersection tests

 Create an OBB for each volume

 Check if center point of mesh is inside

 Trilinear Interpolation

© Disney/Pixar

Advances in Real-Time Rendering in Games

Shader constants

 Per instance shader constants

 Calculate color in shader

 Breaks down for large objects

 Can break mesh apart

with vertex color blending

 Same problem for world lighting

© Disney/Pixar

Advances in Real-Time Rendering in Games

Overlapping Volumes

 Blending is challenging

© Disney/Pixar

Advances in Real-Time Rendering in Games

Time Averaging

 Blend % of the last frame’s SH into the current SH

 Artist adjustable per world

 Trilinear filtering substitute

 Avoid for first frame

 [Mitchell, McTaggart

and Green]

© Disney/Pixar

Advances in Real-Time Rendering in Games

Environment Maps

 Probe without a volume

 Worked really well for road reflections

 Assign environment map probes to volumes

© Disney/Pixar

Advances in Real-Time Rendering in Games

Assigning Environment Maps

 Use volume’s environment map if inside a volume

 Otherwise, use the global probe

 Switch based on the fading region

 Switch was a pop

 Overlapping volumes avoid pops by sharing cubemaps

© Disney/Pixar

Advances in Real-Time Rendering in Games

Direct Lighting

 Pack direct lighting into probes

 Can evaluate lighting in SH and add to bounce

 No extra performance cost

 Dependent on grid density

© Disney/Pixar

Bounced Lighting Direct Lighting

Advances in Real-Time Rendering in Games

Lighting Overrides

 Directional and ambient lights added if inside volume

 Allows artists to control lighting

 2d volume

 1d volume

 Area lights

© Disney/Pixar

Advances in Real-Time Rendering in Games

Artist tricks

 2d volume

© Disney/Pixar

Advances in Real-Time Rendering in Games

Artist Tricks

 Single point volume

© Disney/Pixar

Advances in Real-Time Rendering in Games

Artist Tricks

 Area lights

© Disney/Pixar

Advances in Real-Time Rendering in Games

Ending Thoughts

 Uniform grid is easy and fast

 Used little memory and scaled well for 4 players

 Lots of flexibility with artists

 Future ideas

 GPU lookup of light probes

© Disney/Pixar

Advances in Real-Time Rendering in Games

Trimming the GPU Pipeline
Rob Hall

© Disney/Pixar

Advances in Real-Time Rendering in Games

Overview

 Reduce cost for HDR rendering

 Reduce shadow cost

 Scale shadow maps for 4 player split screen

 Use multi-resolution

 rendering for deferred

 shadow mask

© Disney/Pixar

Advances in Real-Time Rendering in Games

HDR requirements

 If possible, use a 32 bits per pixel target format

 Support all hardware alpha blend states

 Limited range from [0,32] is acceptable

 Reduce banding as much

 as possible

© Disney/Pixar

Advances in Real-Time Rendering in Games

Format Chart

* Except Xbox 360 © Disney/Pixar

 Format Range Alpha Blend Bilinear

Filtering

Perf cost

sRGB [0,1] Yes Yes -

LogLuv [Larson] [10^19, 10^19] Limited No ALU

RGBM [Karis] [0,6] Limited No, but

works OK

ALU

7e3 [0, 31 7/8] Yes Yes Alpha states

double fill rate

R11G11B10 [0, 2^16] Yes Yes -

16F [-2^16, 2^16] Yes* Yes* Double fill rate

Advances in Real-Time Rendering in Games

Sample Image 16F linear

© Disney/Pixar

Advances in Real-Time Rendering in Games

And other 16F linear images

© Disney/Pixar

Advances in Real-Time Rendering in Games

HDR format error

LogLuv

RGBM

7e3(360)

0.005

0.004

0.003

0.002

0.001

0.000
Test Images

R
M

S
E

 E
rr

o
r

© Disney/Pixar

Advances in Real-Time Rendering in Games

Format Chart

Format Range Alpha Blend Bilinear

Filtering

Perf cost

sRGB [0,1] Yes Yes -

LogLuv [Larson] [10^19, 10^19] Limited No ALU

RGBM [Karis] [0,6] Limited No, but

works OK

ALU

7e3 [0, 31 7/8] Yes Yes Alpha states

double fill rate

R11G11B10 [0, 2^16] Yes Yes -

16F [-2^16, 2^16] Yes* Yes* Double fill rate

* Except Xbox 360

Xbox 360

PS3

© Disney/Pixar

Advances in Real-Time Rendering in Games

PS3 Luv

 Similar to LogLuv - compresses 64 bpp to 32bpp

 Encode luminance with a sqrt instead of a log to avoid a

costly exp2 operation on the SPU

 Store luminance in 16 bit fixed point, 3 int 13 frac format

 Range is [0,~64]

 Code sample in Appendix A

© Disney/Pixar

Advances in Real-Time Rendering in Games

7e3 Banding

© Disney/Pixar

Advances in Real-Time Rendering in Games

7e3 Banding

© Disney/Pixar © Disney/Pixar

Advances in Real-Time Rendering in Games

What’s causing this?

Scene

Render

Post

Process

32 bit float

internal

10 bit float

format 32 bit float

internal

8 bit fixed

point

Tone

Mapping

Render

Target

Frame

Buffer

© Disney/Pixar

Advances in Real-Time Rendering in Games

Tone Mapping

Scene

Render

Post

Process

32 bit float

internal

10 bit float

format 32 bit float

internal

8 bit fixed

point

Tone

Mapping

Render

Target

Frame

Buffer

Precision Loss!

© Disney/Pixar

Advances in Real-Time Rendering in Games

Tone Mapping Components

Tone Mapping

Exposure

Operator

Exposure

Simplified Operator [Hable] [Reinhard]

Target_Color = Scene_Color

*(Expected_Exposure /

Prev_Frame_Avg_Luminance)

Tone_Mapped_Color =

Target_Color / (1.0f +

Target_Color)

 © Disney/Pixar

Advances in Real-Time Rendering in Games

Pre-exposed color

Scene

Render

32 bit float

internal

10 bit float

format
32 bit float

internal

8 bit fixed

point

Exposure

Render

Target

Frame

Buffer

Post

Process

Tone Mapping

Operator

© Disney/Pixar

Advances in Real-Time Rendering in Games

No pre-exposed color

© Disney/Pixar

Advances in Real-Time Rendering in Games

With pre-exposed color

© Disney/Pixar

Advances in Real-Time Rendering in Games

No pre-exposed color

© Disney/Pixar

Advances in Real-Time Rendering in Games

With pre-exposed color

© Disney/Pixar

Advances in Real-Time Rendering in Games

Artifacts

 Overall range is clamped

© Disney/Pixar

Clamped Image Red = Error in Clamped Image

Advances in Real-Time Rendering in Games

HDR Results – Xbox 360

 Used 7e3 with pre-exposed color

 No tiling needed on a Non-MSAA 720p target

Advances in Real-Time Rendering in Games

HDR Results – PS3

 Used higher bandwidth 16F format

 Cheaper than LogLuv or RGBM due to GPU being

ALU bound

 SPU benefitted from the PS3Luv encoding due to

lower bandwidth and ALU costs

Advances in Real-Time Rendering in Games

Shadows

Reduce shadow rendering time in half

Advances in Real-Time Rendering in Games

Scaling shadows for multiple viewports

 Four viewports = 4x number of draw calls and geometry

 Cutting resolution only reduces fill rate

+ + + = 4x

© Disney/Pixar

Advances in Real-Time Rendering in Games

Scaling shadows for multiple viewports

 Four viewports = 4x number of draw calls and geometry

 Cutting resolution only reduces fill rate

+ + + = 4x

Solution: Render less in the shadow maps

© Disney/Pixar

Advances in Real-Time Rendering in Games

Two types of objects

Static Objects – Things

that never change position

Dynamic Objects – Those

that can

© Disney/Pixar

Advances in Real-Time Rendering in Games

Light Map

 Precalculates all the shadows for static objects

© Disney/Pixar

Advances in Real-Time Rendering in Games

Dynamic objects

 Need to also receive shadows from light map

 Only need coarse transitions when going in and out of

shadow

© Disney/Pixar

Advances in Real-Time Rendering in Games

Low Resolution Shadow Map

 Use a 256x256 shadow

map

 Super cheap ~0.1ms

 Use simple proxy geometry

© Disney/Pixar

Advances in Real-Time Rendering in Games

LightMap Only

© Disney/Pixar

Advances in Real-Time Rendering in Games

With Low Resolution Shadow Map

© Disney/Pixar

Advances in Real-Time Rendering in Games

Dynamic Shadows

 Only draw the dynamic

objects in two cascades

 Reduced shadow

distance

 Reprojection artifacts

OK since tracks are on

a 2d plane

© Disney/Pixar

Advances in Real-Time Rendering in Games

Lightmap and Low Res Shadow Map

© Disney/Pixar

Advances in Real-Time Rendering in Games

With Dynamic shadows

© Disney/Pixar

Advances in Real-Time Rendering in Games

Reducing deferred shadow mask

 Reduce number of pixels processed

¼ Size Render

Target

Bilateral

Upsample

© Disney/Pixar

Advances in Real-Time Rendering in Games

Unavoidable artifacts

 Edge Artifacts

 Lower resolution

 Too visible to

 ignore

© Disney/Pixar

Advances in Real-Time Rendering in Games

MLAA and Early Stencil Culling [Jimenez]

© Disney/Pixar

Advances in Real-Time Rendering in Games

Early Stencil Culling

 Culls fragments before hitting the

pixel shader

 Supported on PS3, 360, and modern

PC graphics cards

 PC is automatic, PS3 and 360

manually controlled

 Latency between writing and testing

Early stencil value

4x4 pixel block

© Disney/Pixar

Advances in Real-Time Rendering in Games

Deferred shadows with early stencil

 Render shadows at 1/16 resolution

[Hutchinson]

 Fill full resolution early stencil with

1/16 shadow mask

 Re-render shadow edges at full

resolution using early stencil test

Early stencil value

4x4 pixel block

© Disney/Pixar

Advances in Real-Time Rendering in Games

What’s good enough at low resolution?

 Shadow values

that are 0 or 1

 Cascade selection

 Most pixels in

cross bilateral

filter

© Disney/Pixar

Advances in Real-Time Rendering in Games

Render at 1/16 size

1/16 Deferred

shadow mask
Dilate edges

© Disney/Pixar

Advances in Real-Time Rendering in Games

Render at Full Resolution

 Point sample 1/16

target

 Turn on early

stencil writes

 If it is inside the

dilate region, then

texkill

Pixels not yet filled

In shadow

Out of shadow

© Disney/Pixar

Advances in Real-Time Rendering in Games

Render high res shadow mask [Ownby]

 Turn on early

stencil test

 Early stencil culls

pixels filled in

previous pass

 Only renders

~30% of the pixels

© Disney/Pixar

Advances in Real-Time Rendering in Games

Two pass bilateral blur

 Keep early stencil test on

 Only blurs ~30% of the pixels

© Disney/Pixar

Advances in Real-Time Rendering in Games

Edge Artifacts

Early Stencil Culling Without

© Disney/Pixar

Advances in Real-Time Rendering in Games

Edge Artifacts

 Early stencil is

just a mask

 Dilate does not

cover the blur

regions

 Only happens

at extreme

closeups with a

wide dilate
© Disney/Pixar

Advances in Real-Time Rendering in Games

Conclusion

 Pre-exposed color is very effective when rendering to

limited precision targets

 Low res shadow map for dynamic objects is cheap

 Deferred shadow mask

 rendering time effectively

 cut in half

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Processing

David Edwards

Advances in Real-Time Rendering in Games

Motivation and Background

 In Toy Story 3 PS3 GPU performance typically lagged

behind the Xbox 360, some effects had to be simplified

or dropped on PS3 version

 Nearly half of GPU time in Toy Story 3 on PS3 was

related to post processing

 PS3 has a lot of power that wasn’t being fully utilized

© Disney/Pixar

Advances in Real-Time Rendering in Games

Cars 2 SPU Post Process Pipeline

 SPU post process

executes

concurrently with

the GPU

 GPU rendering

reduced by ~10 ms

© Disney/Pixar

Advances in Real-Time Rendering in Games

Cell Broadband Engine

 6 SPUs available

 3.2 GHz

 128 vector registers

 256KB Local Store

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU vs. PS3 GPU Pixel Shading

SPU GPU

Execution

Speed

4 SPUs * 3.2 GHz = 12.8 GHz 24 pixels * 500 MHz = 12.0 GHz

Instructions SIMD, General Purpose SIMD, graphics centric (special

math functions, texturing)

Data Model Must prefetch into local store

before use, no filtering

Texture cache, efficient threading

model to hide latency, filtering

• For most effects SPU near same performance as GPU

• But runs concurrently, so, theoretically, we could nearly

double performance of GPU
© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU vs. PS3 GPU Pixel Shading

GPU Code

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU vs. PS3 GPU Pixel Shading

SPU Code

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Processing Implementation

Main Scene Post Processing Hud GPU

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Processing Implementation

Main Scene Post Processing Hud

Frame 0

Frame

0

Frame 1

Frame

1

Frame 2

Frame

2

Frame 3

GPU

GPU

SPU

SPU Offloading

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Processing Implementation

 SPU post processing adds some overhead

 Source textures must reside in main memory

 SPU can’t (realistically) read from VRAM

 Adds nearly 10 MB to main memory

 Adds about 1.5 ms of GPU overhead

 Either SPU or GPU can copy back to VRAM so use

whatever is not bottlenecked

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Processing Effects

 Scene average log luminance

 Tonemapping

 Morphological antialiasing (This saves main scene GPU time too!)

 Motion blur

 Downsamples / Upsamples

 Highpass

 Gaussian Blurs

 Color correction

 Stereo 3D

 Screen space ambient occlusion (not used in Cars 2)
© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Process Performance

12.25 ms Total

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Process Performance

1.15 ms – three picture in pictures

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Process Performance

1.4 ms – Average Log Luminance/Tonemap

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Process Performance

4.5 ms – Morphological Anti-aliasing

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Process Performance

3.2 ms – Downsample/Motion Blur/Composite

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Process Performance

2.0 ms – HDR Bloom/Composite

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Process Performance

Other SPU Jobs mixed in with Post Processing

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D

Advances in Real-Time Rendering in Games

Cars 2 Stereo 3D

 Implemented as part

of SPU post

processing pipeline

 And hence was free!!

 No reduction in

performance,

graphics content,

effects, and/or

resolution

© Disney/Pixar

Advances in Real-Time Rendering in Games

Mono 3D

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D

Screen Width

(Calculated from TV size)

E
y
e

 S
e

p
a

ra
ti

o
n

 ~
=

 6
.4

 c
m

Screen Distance

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D

Screen Width

(Calculated from TV size)

E
y
e

 S
e

p
a

ra
ti

o
n

 ~
=

 6
.4

 c
m

Screen Distance

Zero Parallax Plane

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D

Screen Width

(Calculated from TV size)

E
y
e

 S
e

p
a

ra
ti

o
n

 ~
=

 6
.4

 c
m

Screen Distance

Zero Parallax Plane

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D

Screen Width

(Calculated from TV size)

E
y
e

 S
e

p
a

ra
ti

o
n

 ~
=

 6
.4

 c
m

Screen Distance

Zero Parallax Plane

© Disney/Pixar

Advances in Real-Time Rendering in Games

Traditional Stereo 3D

 Render both stereo pairs fully including post processing effect.

 Performance Cost is 2x

 Can be optimized

 Scene cull once, share results with both eyes

 Reuse shadow map

 Use lower resolution target, PS3 has hardware upscaling

modes for 3D

 Reduce content or effects

© Disney/Pixar

Advances in Real-Time Rendering in Games

Traditional Stereo 3D

 Traditional Stereo 3D in 4

player split screen game

 Very high geometry cost

(8x)

 Reduced resolution in 4

player split screen would

not be acceptable

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Left

Right

+

Depth

Center

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Occlusions and Disocclusions

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Occlusions and Disocclusions

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Occlusions and Disocclusions

Now Occluded

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Occlusions and Disocclusions

No Longer Occluded

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Occlusions and Disocclusions

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

 Other Issues

 View dependent

lighting, and

reflections

 Translucent

objects (no depth

value written)

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as SPU Post Effect

 SPU has some advantages over GPU for stereo 3D

 Scattered Writes is inverse of Gathered Reads

 Gathered Reads: What texel should I sample for the current pixel?

 Scattered Writes: What pixel should I write to for the current texel?

GPU SPU

Gathered Reads Really Good Good

Scattered Writes Complex/Inefficient Good

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as SPU Post Effect

 Given a depth value, we can reproject the location for

each left and right eye, allowing us to write the color

value to the new location

 This is Scattered Writes, which can be done efficiently

on the SPU

 However, the GPU cannot do this efficiently

 A Gathered Reads approach ends up using

approximated reprojections

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Source
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Left
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

Right
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

 Human eyes are

horizontal

 Stereo reprojection

only shifts to the left

or right

 We can process

each scan line

independently

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

New X Old X Depth Unused Float 4

N-Items where N = width

Item Buffer

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Step 1: Clear depth of each item in item buffer

Step 2: Iterate over depth buffer and fill item buffer

Depth Buffer:

Item Buffer:

Stereo Shift & Depth Test

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Step 3: Hole Filling

Item Buffer:

Two kinds of holes

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Step 3: Hole Filling

Item Buffer:

Two kinds of holes

Rounding Holes

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Step 3: Hole Filling

Item Buffer:

Two kinds of holes

Disocclusion Holes

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Rounding Holes

Item Buffer:

These are not real holes in the scene

Just fill in by interpolating the before and after items

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Disocclusion Holes

Item Buffer:

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Disocclusion Holes

R O A D H O L E L I G H T N I N G Item Buffer:

R O A D R O A D L I G H T N I N G Item Buffer:

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Source
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Left Eye Showing Disocclusions
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Left Eye With Disocclusions Filled
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Step 4: Raster

Item Buffer:

New X Old X

 For each output pixel

 Interpolate item at each pixel center using the New X value

 This gives us an interpolated Old X value

 Use the interpolated Old X value to linear filter into the

color buffer and output

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D as Post Processing

© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Source
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Left Eye With Screen Disocclusion
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Source
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

© Disney/Pixar
Source with tweaked aspect ratio to widen view

Advances in Real-Time Rendering in Games

Stereo 3D Implementation

Left Eye Final
© Disney/Pixar

Advances in Real-Time Rendering in Games

Conclusion

 Moving post

processing onto

SPU was a big

win

 It also gave us

Stereo 3D for free

 SPU is a good fit

for Stereo 3D post

processing

© Disney/Pixar

Advances in Real-Time Rendering in Games

Questions?

Advances in Real-Time Rendering in Games

References

 3D Stereo Design Guide , PlayStation®3 Library Documentation

 3D Stereo Programming Guide, PlayStation®3 Library Documentation

 Castaño, I. 2011. Hemicube Rendering and Integration. Retrieved from http://the-

witness.net/news/2010/09/hemicube-rendering-and-integration/

 Greger, G., Shirley, P., Hubbard, P., Greenberg, D. 1998. The Irradiance Volume.

 Hable, J. 2010. Uncharted 2: HDR Lighting, In GDC 2010.

 Hutchinson, N., Knight, B., Ritchie, M. Parrish, G., and Moore, J. Screen space classification for efficient deferred

shading. In SIGGRAPH 2010

 Jimenez, J., Masia, B., Echevarria, J., Navarro, F., and Gutierrez, D. 2011. GPU Pro 2, ch. Practical

Morphological Anti-Aliasing.

 Karis, B. 2009. RGBM color encoding. Retrieved from http://graphicrants.blogspot.com/2009/04/rgbm-color-

encoding.html

 King, G. 2005. GPU Gems 2, ch. Real-Time Computation of Dynamic Irradiance Environment Maps.

 Kontkanen, J. and Laine, S. 2006. Sampling Precomputed Volumetric Lighting. “Journal of Graphics, GPU, and

Game Tools”. Vol. 11, #3 pp 1-16.

http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://the-witness.net/news/2010/09/hemicube-rendering-and-integration/
http://graphicrants.blogspot.com/2009/04/rgbm-color-encoding.html
http://graphicrants.blogspot.com/2009/04/rgbm-color-encoding.html
http://graphicrants.blogspot.com/2009/04/rgbm-color-encoding.html
http://graphicrants.blogspot.com/2009/04/rgbm-color-encoding.html
http://graphicrants.blogspot.com/2009/04/rgbm-color-encoding.html
http://graphicrants.blogspot.com/2009/04/rgbm-color-encoding.html

Advances in Real-Time Rendering in Games

References

 Larson, G., Encoding for full-gamut, high-dynamic range images. “Journal of Graphics Tools”. Vol 3, #1, Mar

1998.

 Mitchell, J., McTaggart, G. and Green, C. 2006. Shading in Valve’s Source Engine. In SIGGRAPH Courses,

Advanced Real-Time Rendering in 3D Graphics and Games 2006.

 Ownby, J.-P. Hall, R., and Hall, C. Rendering techniques in Toy Story 3. In SIGGRAPH Courses, Advances In

Real-Time Rendering in 3D Graphics and Games 2010

 Perthius, C. 2010. MLAA in God of War 3. In Sony PS3 DevCon 2010.

 Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2010. Photographic tone reproduction for digital images. In

SIGGRAPH 2002.

 Rorke, J. 2010. Lighting Volumes. In GameFest 2010

 Sloan, P.-P. 2008. Stupid Spherical Harmonics Tricks. In GDC 2008.

 Tatarchuk, N. 2005. Irradiance Volumes for Games. In GDC Europe 2005.

 Tchou, C. 2006. HDR the Bungie Way. In GameFest 2006.

 Williams, M. 2010. Hustle Kings Lighting. Retrieved from http://www.voofoostudios.com/?p=156

http://www.voofoostudios.com/?p=156

Advances in Real-Time Rendering in Games

Extra Slides

Advances in Real-Time Rendering in Games

Stereo 3D Post Processing Gotchas

 Pixel separation can get high when coming out of

screen, hence more disocclusion artificats

 So clamped min Z

 Small TVs = Higher Pixel separation

 Clamped distortion to ensure max pixel separation

stayed within decent limit

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Tips and Tricks

 Use SPA (SPU Pipelining Assember)

 Optimizes loops by pipelining, to achieve maximum

instruction throughput

 In some cases this nearly speeds it up 2x

 Double buffer SPU input and output buffers, most SPU

effects can run at near 100% CPU utilization, without

any memory stalls

© Disney/Pixar

Advances in Real-Time Rendering in Games

SPU Post Process Performance

Execution vs. DMA stalls
© Disney/Pixar

Advances in Real-Time Rendering in Games

Stereo 3D issues

 Out of screen 3D is difficult

 Windows violation

 Uncomfortable eye positions/movements

 2D focuses only on screen (comfortable)

 3D focuses in front and behind

 Can’t focus on the whole screen at once

 Quick depth focus change is hard

 Going cross-eyed is uncomfortable

© Disney/Pixar
© Disney/Pixar

Advances in Real-Time Rendering in Games

Appendix A - PS3 Luv sample code
GPU Encode:

Modified function from LogLuv [Karis]:

const static float fx16Scale = 8192.0 / 65535.0;

vResult.zw = unpack_4ubyte(pack_2ushort(sqrt(Xp_Y_XYZp.y) * fx16Scale)).xy;

SPU Decode:

cuflt = Convert Unsigned Integer To Float

fm = Floating Point Multiply

cuflt lum, lum, 13

fm lum, lum, lum

© Disney/Pixar

